On the Hopf Lemma

نویسندگان

  • YanYan Li
  • Louis Nirenberg
  • YANYAN LI
  • LOUIS NIRENBERG
چکیده

The Hopf Lemma for second order elliptic operators is proved to hold in domains with C, and even less regular, boundaries. It need not hold for C boundaries. Corresponding results are proved for second order parabolic operators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hopf lemma for higher order differential inequalities and its applications

Article history: Received 14 September 2012 Available online 5 August 2013 We establish a sequential Hopf lemma for higher order differential inequalities in one variable and give some applications of this result. © 2013 Elsevier Inc. All rights reserved.

متن کامل

. A P ] 2 8 Ja n 20 05 ON HOPF ’ S LEMMA AND THE STRONG MAXIMUM PRINCIPLE

In this paper we consider Hopf’s Lemma and the Strong Maximum Principle for supersolutions to

متن کامل

2 9 Ja n 20 06 A geometric problem and the Hopf Lemma

A classical result of A.D. Alexandrov states that a connected compact smooth n−dimensional manifold without boundary, embedded in Rn+1, and such that its mean curvature is constant, is a sphere. Here we study the problem of symmetry of M in a hyperplane Xn+1 =constant in case M satisfies: for any two points (X ,Xn+1), (X ′, X̂n+1) on M , with Xn+1 > X̂n+1, the mean curvature at the first is not g...

متن کامل

6 A geometric problem and the Hopf Lemma . II YanYan

A classical result of A.D. Alexandrov states that a connected compact smooth n−dimensional manifold without boundary, embedded in Rn+1, and such that its mean curvature is constant, is a sphere. Here we study the problem of symmetry of M in a hyperplane Xn+1 =constant in case M satisfies: for any two points (X ,Xn+1), (X ′, X̂n+1) on M , with Xn+1 > X̂n+1, the mean curvature at the first is not g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007